Training in virtual environments via a hybrid dynamic trainer model
نویسنده
چکیده
This thesis presents a novel virtual reality (VR) training concept that integrates the trainer or the trainer model into training sessions. As an extension to conventional VR training systems that rely only on realistic interaction, the students are given the chance to be corrected by the trainer in a multi-user schema. The trainer is connected to the same virtual environment as the student via an individual haptic display. As an alternative, task performing skill of the trainer is captured with hybrid identification methods and the trainer is replaced with the identified model allowing for a single-user training schema. Two different identification approaches are successfully applied and presented in this thesis: The weighted K-means clustering-based method and the stochastically switching dynamics method. Observations and corrections of the trainer or trainer model are multi-modal, i.e. can be represented in the form of visual, acoustic and/or haptic signals. The combination of these possible signals allows for the definition of different training strategies. Enhancing the training systems with extra features that are not available in a real task is investigated as well. Two different VR scenarios are developed as test-beds: A bone drilling medical training system and a push button system. The efficiency of the different training strategies is checked through a series of user tests. To assess the training results objectively, a metric depending on the distance between the trainer and student in n dimensional Euclidean space is introduced and applied. The results validate the efficiency and usability of the training strategies and hybrid identification methods. Zusammenfassung Vorliegende Dissertation stellt ein neuartiges Virtual Reality (VR) Trainingkonzept vor, das den Trainer oder ein Modell des Trainers in eine Trainingssitzung integriert. Als Erweiterung zu klassischen VR Trainingssystemen, die nur auf realistischer Interaktion basieren, haben die Studenten die Möglichkeit vom Trainer bzw. vom Trainermodell korrigiert zu werden. In sogenannten Multi-User Szenarien sind Trainer und Schüler durch zwei individuelle haptische Displays mit der virtuellen Umgebung verbunden. Die sensomotorische Fähigkeit des Trainers wird mittels der Methode der hybriden Identifikation erfasst. In dieser Arbeit werden zwei unterschiedliche Ansätze vorgestellt und erfolgreich angewendet: Die sogenannte gewichtete K-means Clustering Methode und die stochastisch umschaltende Dynamik Methode. Nachdem das hybride dynamische Modell des Trainers entworfen worden ist, besteht die Möglichkeit den Trainer durch das Modell zu ersetzen. Beobachtung und Korrektur durch den Trainer bzw. das Modell erfolgen multimodal, d.h. in Form von visuellen, akustischen sowie haptischen Signalen. Die Kombination dieser Signale ermöglicht die Konzeption unterschiedlicher Trainingsstrategien. Desweiteren wird die Erweiterung der Trainingssysteme durch zusätzliche Funktionen, die in reellen Systemen nicht existieren, diskutiert. Zwei VR-Szenarien werden als Testumfeld verwendet: Das Bohren von Knochen im Rahmen eines medizinischen Trainingssystems sowie das Betätigen virtueller Knöpfe. Die Wirksamkeit der Trainingsstrategien wird durch eine Reihe von Benutzerstudien untersucht. Um die Ergebnisse objektiv zu bewerten, wird eine Evaluierungsmethode eingeführt, die auf einem Maß im n dimensionalen Euklidischen Raum basiert, das die Distanz zwischen Trainer und Schüler beschreibt. Die Ergebnisse bestätigen die Effizienz und Anwendbarkeit der in dieser Dissertation vorgestellten Trainingssysteme.
منابع مشابه
A Multi-objective Optimization Model for Dynamic Virtual Cellular Manufacturing Systems
Companies and firms, nowadays, due to mounting competition and product diversity, seek to apply virtual cellular manufacturing systems to reduce production costs and improve quality of the products. In addition, as a result of rapid advancement of technology and the reduction of product life cycle, production systems have turned towards dynamic production environments. Dynamic cellular manufact...
متن کاملHaptic-enabled Collaborative Virtual Environments for Skills Training
Many manual tasks such as those in surgical applications require a high degree of motor skills that can only be gained through extensive training. This thesis is concerned with the design and control of collaborative training virtual environments with haptic feedback for skills training. The term ”collaborative training” refers to a scheme in which the trainee and the trainer operate in a share...
متن کاملNatural Language Processing in Virtual Reality Training Environments
Technological advances in areas such as transportation, communications, and science are rapidly changing our world--the rate of change will only increase in the 21st century. Innovations in training will be needed to meet these new requirements. Not only must soldiers and workers become proficient in using these new technologies, but shrinking manpower requires more crosstraining, self-paced tr...
متن کاملImproving trainer decisions into a CVE for training applying ZPD concept
Assign the students the appropriate task associated with this own capabilities and knowledge, and form rights groups among team members are two main problems that a Pedagogical Agent –acting like a trainermust solve into a Collaborative Virtual Environment for training. We use reusable learning objects design by contract to formulate a Student Knowledge Model and a student ZPD, concepts derived...
متن کاملA Part - Task Trainer for Underwater Tether Awareness
The Training for Remote Sensing and Manipulation (TRANSoM) group has developed a virtual environment (VE) system for training ROV operators. Currently, the training system does not contain a model for tether interaction with objects in the VE. This paper describes a part-task trainer that has been developed for training tether awareness. The part-task trainer can also be used for testing tether...
متن کامل